Logik

Prüfungsklausur - Aufgaben

Aufgabe 1 [10 Punkte]

Geben Sie die Definition folgender Begriffe der Aussagenlogik an.

- a) aussagenlogischer Ausdruck,
- b) Belegung,
- c) semantische Äquivalenz von aussagenlogischen Ausdrücken A_1 und A_2 ,
- d) Resolvente von zwei Klauseln K_1 und K_2 ,
- e) res(K) für eine Menge von Klauseln K.

Aufgabe 2 [2 Punkte]

Sind die folgenden aussagenlogischen Ausdrücke in konjunktiver Normalform? Sind sie in disjunktiver Normalform? Nur Antworten nennen, ohne Begründungen.

- a) $(p \land q)$
- b) $((p \land q) \lor \neg q)$
- c) $((p \lor q) \land \neg (p \land q))$
- d) $((p \lor q) \land (\neg p \lor \neg q))$

Aufgabe 3 [4 Punkte]

Bestimmen Sie nachvollziehbar die Werte der folgenden aussagenlogischen Ausdrücke für die Belegungen α mit $\alpha(p)=1$, $\alpha(q)=1$, $\alpha(r)=0$ und β mit $\beta(p)=1$, $\beta(q)=0$, $\beta(r)=0$.

a)
$$(p \leftrightarrow (q \land \neg r))$$

b)
$$((p \lor q) \leftrightarrow r)$$

Aufgabe 4 [5 Punkte]

Bestimmen Sie je einen semantisch äquivalenten Ausdruck in konjunktiver Normalform und einen in disjunktiver Normalform zum Ausdruck

$$\Big(\big((p_3 \vee p_1) \wedge (p_2 \to p_1) \big) \wedge (p_3 \leftrightarrow p_2) \Big).$$

Aufgabe 5 [3 Punkte]

Eine Alternative $B=(B_1\vee B_2\vee\ldots\vee B_n)$ heißt positiv, wenn alle $B_i, 1\leq i\leq n$, Variable sind. Beweisen Sie, dass ein aussagenlogischer Ausdruck $A=(A_1\wedge A_2\wedge\ldots\wedge A_m)$ in konjunktiver Normalform, in dem keine der Alternativen $A_i, 1\leq i\leq m$, positiv ist, erfüllbar ist.

Aufgabe 6 [6 Punkte]

Bestimmen Sie jeweils $res^*(K)$ für

a)
$$K = \{ \{\neg p\}, \{p, r\}, \{p, \neg q\}, \{q\} \}$$

b)
$$K = \{\{q, r\}, \{p, \neg q\}, \{\neg r\}\}$$

Was können Sie den Resultaten entnehmen?

Aufgabe 7 [4 Punkte]

- a) Geben Sie die Definition von Horn-Ausdrücken an.
- b) Worin besteht die Bedeutung von Horn-Ausdrücken?
- c) Worin bestehen die Nachteile von Horn-Ausdrücken?

Aufgabe 8 [6 Punkte]

Man überprüfe folgende Ausdrücke mittels Algorithmus für Hornausdrücke auf Erfüllbarkeit und gebe gegebenfalls eine erfüllende Belegung an.

a)
$$((\neg q \lor \neg p) \land (\neg r \lor p) \land \neg q \land \neg r)$$

b)
$$((\neg q \lor p) \land (\neg r \lor p) \land q \land r)$$

c)
$$((\neg q \lor \neg p) \land (\neg r \lor p) \land q \land r)$$

Aufgabe 9 [3 Punkte]

Man zeige, dass folgende Aussage nicht für alle aussagenlogische Ausdrücke F und G gilt: Falls $(F \to G)$ erfüllbar ist und F erfüllbar ist, so ist G erfüllbar.

Aufgabe 10 [4 Punkte]

Gegeben sei die Signatur S durch $K=\{a\},\ F_3=\{f\},\ R_2=\{r\}$ und $F_i=R_i=\emptyset$ sonst.

- a) Man gebe vier Terme über der Signatur S und der Varaiblenmenge $var = \{x\}$ an.
- b) Man gebe alle prädikatenlogischen Ausdrücke über der Signatur S und der Variablenmenge $var = \{x\}$ an, deren Länge höchstens 8 ist.

Aufgabe 11 [3 Punkte]

Gegeben sei die Signatur S durch $K=\{a\},\ F_2=\{f\},\ R_2=\{r\}$ und $F_i=R_i=\emptyset$ sonst sowie eine Interpretation $I=(U,\tau)$ mit $U=\mathbb{N},\ \tau(a)=2,\ \tau(f)=F\colon\mathbb{N}^2\to\mathbb{N}$ vermöge F(n,m)=n+m, $\tau(r)=\{(n,m)|m=n+2\}.$ Bestimmen Sie nachvollziehbar den Wert $w^I_\alpha(A)$ für den folgenden Ausdruck A bei der Belegung α mit $\alpha(x)=3.$

$$A = \exists x \ r(a, x)$$