Fakultät für Mathematik IAN/IMO

Magdeburg, 30. Januar 2006

Wiederholung Mathematik I / II für Informatik, Computervisualistik, Ing.-Informatik und Wirtschaftsinformatik

Bitte in Druckschrift ausfüllen!

Name	Vorname	Fachrichtung	Matrikelnummer	Wiederholer		
				ja/nein		

Punktebewertung

Aufgabe	1	2	3	4	5	6	7	8	9	\sum
Punkte										
erreichte										
Punkte										

Jede Antwort ist zu begründen!

- 1. Beweisen Sie $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$.
- 2. Bestimmen Sie die Lösungen z=x+yi der folgenden Ungleichungen und stellen Sie diese in der Gaußchen Zahlenebene dar:

$$\left|\frac{z}{2i-1}\right| \leq \left(\frac{i}{2i+1}\right) \left(\frac{2}{5} - \frac{1}{5}i\right).$$

3. In der Menge \mathbb{R}^2 sei folgende Relation R gegeben:

$$(x_1, y_1) R(x_2, y_2) \Leftrightarrow x_1^2 + 4y_2 = x_2^2 + 4y_1.$$

- (a) Untersuchen Sie die Relation R auf ihre Eigenschaften.
- (b) Gibt es eine Klasseneinteilung in \mathbb{R}^2 bezüglich der Relation R? Wenn ja, beschreiben Sie die Klassen $[a,a]_R$ mit $a\in\mathbb{R}$ und die Klassen allgemein.
- 4. Auf der Menge $\mathbb Z$ der ganzen Zahlen sei folgende Operation definiert:

$$x \circ y = x + y + xy.$$

Untersuchen Sie die Struktur Z(o) auf ihre Eigenschaften.

5. Gegeben seien die Einheitsmatrix
$$E=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, die Matrix $A=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ und die Menge $M=\{E,A,A^2,A^3\}$.

- (a) Untersuchen Sie die Struktur $M(\cdot)$, wobei · die gewöhnliche Matrizenmultiplikation ist.
- (b) Untersuchen Sie die Strukturen $M(\cdot)$ und $\mathbb{Z}_5 \setminus \{[0]_5\}$ (\odot) auf Isomorphie, wobei \odot die Restklassenmultiplikation sei.
- 6. Gegeben sei die Matrix A mit

$$A = \left[\begin{array}{ccc} \lambda - 1 & -1 & -1 \\ 0 & \lambda - 1 & \lambda - 1 \\ 1 & 0 & 1 \end{array} \right] \text{ , } \lambda \in \mathbb{R}.$$

- (a) Für welche Werte $\lambda \in \mathbb{R}$ ist die lineare Abbildung $f : \mathbb{R}^3 \to \mathbb{R}^3$ mit f(x) = Ax bijektiv?
- (b) Liegt der Einheitsvektor $(1,0,0)^T$ im Falle $\lambda=2$ im Bildraum der Abbildung f? Begründen Sie Ihre Aussage.
- (c) Bestimmen Sie den Kern der Abbildung f und die Dimension des Kerns in Abhängigkeit von $\lambda \in \mathbb{R}$.
- 7. Gegeben sei das lineare Gleichungssystem

- (a) Bestimmen Sie das Lösungsverhalten des Gleichungssystems in Abhängigkeit von $\alpha,\beta\in\mathbb{R}.$
- (b) Bestimmen Sie im Falle $\beta=1$ alle Lösungen in Abhängigkeit von $\alpha\in\mathbb{R}.$

- 8. Untersuchen Sie die Reihe $\sum_{n=0}^{\infty} \frac{n}{n+1} \left(\frac{x}{2}\right)^n$ auf Konvergenz.
- 9. Ermitteln Sie $f'\left(\frac{\sqrt{\pi}}{2}\right)$ für $f(x) = \sqrt{1+\cos^2 x^2}$.
 - (a) Bestimmen Sie die 1. Ableitung von $f(x) = (x+1)^{x+1}$ für x > 1.
 - (b) Bestimmen Sie den Grenzwert $\lim_{x\to 1} \left(\frac{1}{x-1} \frac{2}{x^2-1} \right)$.