Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Gohar Kyureghyan, Dr. Michael Höding

Modulprüfung Mathematik II

Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik

SS 2016 30.09.2016

Name	Vorname	Fachrichtg.	Matrikelnr.	Leist.Nach.?	

Punkte Klausur

Aufgabe	1	2	3	4	5	$\sum_{i=1}^{n}$	Note
max. Punkte	10	10	10	10	10	50	
Punkte	7598000	¥ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1993	it a side	

Bitte beachten!

- Schreiben Sie auf jedes Blatt Ihren Namen und Matrikelnummer.
- Beginnen Sie jede Aufgabe mit einem neuen Blatt.
- Alle Aussagen müssen sorgfältig begründet werden.
- Bearbeitungszeit 120 Minuten.
- Erlaubte Hilfsmittel: Ein A4-Blatt Formelsammlung

Viel Erfolg!

1. Gegeben sei die Matrix A mit

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 4 & 1 \end{array}\right) \in \mathbb{R}^{3 \times 3}.$$

- (i) Zeigen Sie, dass $\lambda = 1$ ein Eigenwert der Matrix A über $\mathbb R$ ist.
- (ii) Bestimmen Sie den Eigenraum zum Eigenwert $\lambda = 1$ von A.
- (iii) Ermitteln Sie die Dimension des Eigenraumes zum Eigenwert $\lambda=1$ von A.
- 2. Sei die Gruppe $G=(M,\star)$ mit $M=\{a,b,c,d\}$ durch folgende Gruppentafel gegeben:

*	a	b	c	d
a	C	a	d	b
b	a	b	c	d
C	d	c	b	a
d	b	d	a	c

- (i) Bestimmen Sie für die Elemente a und c die Ordnung und das inverse Element.
- (ii) Geben Sie alle Untergruppen von G mit zwei Elementen an.
- (iii) Untersuchen Sie, ob es eine Untergruppe mit drei Elementen gibt.
- 3. Gegeben seien die Funktionen $f: D_f \to \mathbb{R}$ mit $f(x) = \frac{e^{2x} e^{x+1}}{2 \sqrt{|x+3|}}$.
 - (i) Bestimmen Sie den Definitionsbereich der Funktion f(x).

2

- (ii) Ermitteln Sie die Nullstellen der Funktion f(x).
- (iii) Bestimmen Sie den Grenzwert $\lim_{x\to 1} f(x)$.

- 4. Gegeben sei die Funktion $f: \mathbb{R}_{>0} \to \mathbb{R}$ mit $f(x) = x(1 + \ln x)$.
 - i) Ermitteln Sie die erste Ableitung der Funktion f.
 - ii) Bestimmen Sie das Taylorpolynom 1. Grades an der Stelle $x_0=1$.
 - iii) Ermitteln Sie eine Stammfunktion von f mithilfe der partiellen Integration.
- 5. Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x(2-x) + 2xy 2y^2$.
 - (i) Bestimmen Sie den Gradienten $\operatorname{grad} f(\mathbf{x})$ im Punkt $\mathbf{x}^0 = (1,1)$ und im Punkt $\mathbf{x}^1 = (2,1)$.
 - (ii) Zeigen Sie, dass im Punkt $\mathbf{x}^1=(2,1)$ ein lokales Maximum vorliegt.